Do we need new practices to direct change?

Dawn Magness, PhD Landscape Ecologist, U.S. Fish & Wildlife Service Kenai National Wildlife Refuge Dawn Magness@fws.gov

> Thanks to the Dena'ina and Alutiiq people

Case study: Ecological transformation on the Kenai Peninsula

Ecological transformation on the Kenai

Caribou Hills Fire 2007

Tustumena Lake Fire 2019

1900 - 68 cm, 2.3° C 1980 - 73 cm, 3.3 ° C 2090 - 84 cm, 6.8 ° C

Staudinger et al. 2012. Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services: Technical Input to the 2013 National Climate Assessment. Cooperative Report to the 2013 National Climate Assessment.

1900 - 68 cm, 2.3° C 1980 - 73 cm, 3.3 ° C 2090 - 84 cm, 6.8 ° C

Staudinger et al. 2012. Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services: Technical Input to the 2013 National Climate Assessment. Cooperative Report to the 2013 National Climate Assessment.

Ecosystems, and Ecosystem Services: Technical Input to the 2013 National Climate Assessment. Cooperative Report to the 2013 National Climate Assessment.

Naturalness response?

Kenai National Wildlife Refuge purpose is "to conserve fish and wildlife populations and habitats in their natural diversity"

Historical Condition Response?

TIME

How to Shape the Future? Our refuge purpose is Natural Diversity....

TIME

Direct novel grassland or novel forest?

Adaptive management loops

Table 1. Loops within the resist-accept-direct (RAD) adaptive-management framework with their purpose, typical actors, iteration frequency, and potential information-gathering approaches that can be used for navigating the loops.

Loop	Purpose	Actors	Relative Iteration frequency	Information gathering approaches
Outer Reimagining the course	Navigate the existing knowledge base to identify desired ecosystem futures and relevant RAD strategies given ecological, economic, and social constraints	Policy makers, stakeholders, managers	• •	Surveillance monitoring to refine plausible future trajectories, experiments and pilot studies to examine potential RAD pathway changes
<i>Middle</i> Adjusting the course	Develop management objectives under the current RAD pathway in order to achieve desired ecosystem futures	Stakeholders, managers	• • •	Targeted monitoring to identify ecological tipping points, experiments to examine system thresholds
Inner Staying the course	Implement, monitor, evaluate, and adjust actions to iteratively improve management effectiveness and achieve management objectives	Managers	• • • •	Targeted monitoring to evaluate progress toward management objectives, pilot studies and experimentation to test alternative management actions
Note: Although we depict iterations occurring at regular frequencies, the middle- and outer-loop iterations may be triggered by regular revisit				

Lynch, Abigail J., Laura M Thompson, John M Morton, Erik A Beever, Michael Clifford, Douglas Limpinsel, Robert T Magill, Dawn R Magness, Tracy A Melvin, Robert A Newman, Mark T Porath, Frank J Rahel, Joel H Reynolds, Gregor W Schuurman, Suresh A Sethi, Jennifer L Wilkening, RAD Adaptive Management for Transforming Ecosystems, BioScience, Volume 72, Issue 1, January 2022, Pages 45–56, <u>https://doi.org/10.1093/biosci/biab091</u>

What do we need to direct change? Preparation for the outer loop

Magness, Dawn R., Ella Wagener, Emily Yurcich, Ryan Mollnow, Diane Granfors, and Jennifer L. Wilkening. 2022. "A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States" *Earth* 3, no. 1: 136-156. <u>https://doi.org/10.3390/earth3010011</u>

What ecological futures are possible?

• Magness, Dawn R., Linh Hoang, R Travis Belote, Jean Brennan, Wylie Carr, F Stuart Chapin, III, Katherine Clifford, Wendy Morrison, John M Morton, Helen R Sofaer. 2022. Management foundations for navigating ecological transformation by resisting, accepting, or directing social-ecological change. Bioscience 71.30-44 https://doi.org/10.1093/biosci/biab083

• Magness, Dawn R., Ella Wagener, Emily Yurcich, Ryan Mollnow, Diane Granfors, and Jennifer L. Wilkening. 2022. "A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States" Earth 3, no. 1: 136-156. <u>https://doi.org/10.3390/earth3010011</u>

Can interventions be used to shape future conditions?

• Magness, Dawn R., Linh Hoang, R Travis Belote, Jean Brennan, Wylie Carr, F Stuart Chapin, III, Katherine Clifford, Wendy Morrison, John M Morton, Helen R Sofaer. 2022. Management foundations for navigating ecological transformation by resisting, accepting, or directing social-ecological change. Bioscience 71.30-44 https://doi.org/10.1093/biosci/biab083

• Magness, Dawn R., Ella Wagener, Emily Yurcich, Ryan Mollnow, Diane Granfors, and Jennifer L. Wilkening. 2022. "A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States" Earth 3, no. 1: 136-156. <u>https://doi.org/10.3390/earth3010011</u>

What is the regional conservation strategy in the future ?

Is the "prairie and grassland" climate signal a local anomaly or regional trend?

> Scanning the future for options to build an adaptation **portfolio** as change unfolds

SNAP-EWHALE. Predicting future potential climate-biomes for the Yukon, Northwest Territories and Alaska [Internet]. University of Alaska Fairbanks, Fairbanks: Scenarios Network for Arctic Planning, and Ecological Wildlife Habitat Data Analysis for the Land and Seascape Laboratory; 2012. Available from: <u>http://www.snap.uaf.edu/attachments/Cliomes-FINAL.pdf</u>

What is the regional conservation strategy in the future ?

Magness, Dawn R., Ella Wagener, Emily Yurcich, Ryan Mollnow, Diane Granfors, and Jennifer L. Wilkening. 2022. "A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States" *Earth* 3, no. 1: 136-156. <u>https://doi.org/10.3390/earth3010011</u>

Pathway planning

Identify triggers for action

- Identify the political, legal, economic, technical, and other barriers to action so that they can be proactively addressed
- Identify steps needed to get to desired future or avoid maladaptive outcome
- Explore how choices today limit future options
- Identify transformative options

Four "Foundations" for managing change

- 1. the range of plausible ecological trajectories (a) *What ecological futures are possible?*
- 2. pathway planning to achieve desired conditions (b, c) Can intervention be used to shape future conditions?
- 3. portfolio design (d) What is the regional conservation strategy in the future?
- 4. upstream, deliberative engagement (e)

Magness, Dawn R., Linh Hoang, R Travis Belote, Jean Brennan, Wylie Carr, F Stuart Chapin, III, Katherine Clifford, Wendy Morrison, John M Morton, Helen R Sofaer. 2022. Management foundations for navigating ecological transformation by resisting, accepting, or directing social-ecological change. Bioscience 71.30-44 <u>https://doi.org/10.1093/biosci/biab083</u>